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PREFACE 

This report was prepared under Contract DACA76-92-C-0007 for the U.S. Army Topographic 
Engineering Center, Alexandria, Virginia 22315-3864 by Columbia University, New York, NY 10027. 
The Contracting Officer's Representative was Ms. Lauretta Williams. 



1 INTRODUCTION 
This is the annual report for Darpa Contract DACA76-92-C-007, covering the period 3 April 
1994 to 2 April 1995. In this report, we will highlight our progress and accomplishments 
across the full spectrum of research in machine vision, including physical models for image 
understanding, object recognition and modeling using vision, robotic vision, and integration 
of vision with hand gestures and language. More detailed results can be found in the papers 
listed in the bibliography and the most recent Advanced Research Projects Agency (ARPA) 
Image Understanding Workshop proceedings. 

2 PHYSICAL MODELS FOR IMAGE 
UNDERSTANDING 

2.1     Seeing Beyond Lambert's Law 

Reflectance may be viewed as the first physical mechanism in the process of visual perception 
by man or machine. Hence, accurate reflectance models are key to the advancement of image 
understanding. In last year's report, we reported the development of a new comprehensive 
model for diffuse reflectance. This model was demonstrated to be an extensive generalization 
of the popular Lambert's model, and has far reaching implications for machine vision, visual 
psychophysics, computer graphics, and remote sensing. It shows that diffuse reflection can 
deviate significantly from Lambert's Law as the macroscopic roughness of a surface increases, 
causing the surface to appear brightest in the direction of the light source rather than the 
surface normal direction or the specular direction. We have conducted experiments on several 
natural and man-made surfaces such as clay, cloth, plaster, and wood, to demonstrate that 
the model subsumes a wide spectrum of real-world surfaces. In all cases, the accuracy of 
the model was found to be consistently high. In addition, the model was recently used for 
realistic graphics rendering. These results were presented at the 1994 SIGGRAPH conference 
held in Orlando in July, 1994 [20]. The implications of the model for computational vision 
were published in the International Journal of Computer Vision in March, 1995 [2l]. 

The above reflectance model has lead us to an interesting observation. It predicts that 
very rough objects, when illuminated from close to the viewing direction, generate images 
of nearly constant brightness. In other words, the object, irrespective of its shape (be it 
polyhedral or smoothly curved), will produce just a silhouette, devoid of any brightness 
variations or shading! This visual effect is illustrated in Figure 1 which shows two cubes of 
the same dimensions, made from exactly the same material (clay), and illuminated from the 
same direction. The only factor causing the two cubes to appear different is their surface 
roughness. The cube on the left is fairly smooth and behaves very much like a Lambertian 
object with its three visible faces producing different brightness values. In contrast, the 
high roughness of the cube on the right causes all points on its surface to produce more 
or less the same brightness in the viewing direction, producing a silhouette of the object 



without any clearly discernible edges. Therefore, in the case of very rough diffuse objects 
illuminated from close to the viewing direction, shape from shading, by man or machine, 
becomes impossible! The implications of these results were reported in the journal Science 
in February, 1995 [19]. 

Figure 1: Two cubes of similar dimensions, made from exactly the same material (clay), 
and illuminated from the same direction (close to the viewing direction). The cube on the 
left is fairly smooth and behaves very much like a Lambertian object, while the one on the 
right has high roughness causes all points on its surface to produce more or less the same 
brightness; a silhouette without any clearly discernible edges. This effect is predicted by the 
developed reflectance model. 

2.2     Recovery of Specular Surfaces 

We have developed a theoretical framework for the perception of the three-dimensional ge- 
ometry of specular (mirror-like) surfaces. Such surfaces are commonplace and the recovery 
of specular shapes has been to known to be a hard problem to solve. While it is not possible 
to compute specular structures from a single image, we have shown that a moving observer 
has sufficient image constraints to estimate shape unambiguously. When an observer moves 
in three-dimensional space, real scene features, such as surface markings, remain stationary 
with respect to the surfaces they belong to. In contrast, a virtual feature, which is the 
specular reflection of a real feature, travels on the surface. Based on the notion of caustics, 
a novel feature classification algorithm was developed that distinguishes real and virtual 
features from their image trajectories that result from observer motion. Next, using the 
support function representation of curves, a closed-form relation was derived between the 
image trajectory of a virtual feature and the geometry of the specular surface it travels on. 
We showed that a specular surface profile can be uniquely recovered by tracking just two 



unknown virtual features (see Figure 2). A publication on these results was awarded the 
David Marr Prize at the 1995 International Conference on Computer Vision held in Boston 
in June, 1995 [22]. 
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Figure 2: 2-D profile of a sphere recovered by tracking two unknown features, (a) Support 
functions of the two features computed from their image trajectories, (b) The recovered 
surface profile. The dots represent the computed profile and the solid line is the actual 
profile. 

All area-based stereo algorithms are based on the implicit assumption that points in the 
scene are Lambertian in reflectance and hence corresponding points in stereo images have 
identical brightness values. However, specular reflection is highly viewpoint dependent. As 
a result, specularities can cause large intensity differences at corresponding points in stereo 
images. We have analyzed the physics of specular reflection and the geometry of stereop- 
sis to arrive at an interesting relation between stereo vergence, surface roughness, and the 
likelihood of a correct stereo match. This result has led to a multiple-view stereo configu- 
ration that produces accurate depth maps in the presence of specular reflections. Several 
experiments were conducted on surfaces with varying reflectance properties to demonstrate 
the benefits of the proposed stereo configuration. These results were presented at the 1995 
International Conference on Computer Vision held in Boston in June, 1995 [6]. 



2.3    Color, Polarization and Roughness 

Continuing our work from last year, we finished our experimentation on the basic integration 
of color and polarization, providing for light source localization, color correction and highlight 
removal and their use in photometric stereo. The paper detailing the results of this work has 
been accepted to the Internation Journal of Computer Vision (IJCV) [18]. Working with 
two undergraduates we have made details of the experimentation available on the WWW at 
URL http://www.eecs.lehigh.edu/boult/POLAR. 

Our previous work on polarization characteristics assumed "optically" smooth surfaces. 
It is natural to ask how the polarization characteristics vary as the surface deviates from 
"smooth". Again the issue of how to "model" roughness and the scale of roughness must 
be addressed. Because the inspection of surface finish is an important manufacturing ap- 
plication, we have decided to concentrate on micro-scale roughness, with surface variations 
between 10~4m down to 10"9m (Equivalent to "sanding" surfaces with emery cloth from grit 
240 down to 4000.) Accurate, non-contact high-speed measurements of roughness at this 
level is also important in process-control as it can be used to indirectly detect/monitor wear 
of the machining and/or extrusion components in a manufacturing cell. 

We could try and follow the approach of Nayar and Oren, building up a predictive model 
based on the analysis of a V-groove model of the roughness. However, because polarization 
is effected by both surface (specular) reflection and "diffuse" reflection, that analysis would 
be quite difficult. Further difficulties arise for roughness on the scales on the order of a 
wavelength < 10-6m) because diffraction causes depolarization in a complex manner. Thus 
we have been pursuing roughness measurements via a "bulk" roughness model, or what has 
become known as an effective-medium-theory (EMT). 

Numerous papers have studied the basic polarization affects of reflection from rough sur- 
faces. The EMT model replaces usual Fresnel reflection coefficients .Fj_and i^with "effective" 
Fresnel coefficients which are scaled as a "roughness" factor. 

Ml,*,)   =   p(^,j)Fx(r,,iß) 

F\\{v,i>,)   =   PW,J)F{](T},IP) 

where F±(r),iß) and F\\(TJ, iß), are the Fresnel reflection coefficients of a smooth surface with 
index of refraction T) and p(iß, |) is a measure of roughness which for material with finite 
conductance is given by: 

/3(V',(T) = e(-
4'rCOS^'f)2 (1) 

where iß is the angle of incidence, A is the wavelength of light, and a is the standard deviation 
of the (assumed Gaussian) surface. 

By considering the full functional form of the Fresnel coefficients, one can derive that at 
iß — 45° we have 

4^ = e("8-?)2 (2) 



independent of the material's index of refraction! This important quantity is called the spec- 
ularity index of the surface. Thus, by approximating the specularity index, we can, given 
assumptions on the roughness model, infer the surface roughness. With a full ellipsometer, 
the components of effective Fresnel coefficients can be computed and the ratio in equation 2 
directly computed. As in much of our past work with polarization-based vision, the goal of 
this research is to find effective approximations which can be computed using vision sensors. 
In particular, we seek techniques for computing p which do not require full ellipsometric 
techniques and are amenable to near-real time computation. Techniques we anticipate re- 
searching will include using multiple angles of incident and multiple colors (wavelengths). 
(To compute larger scale roughness we will need to consider polarization in the IR domain.) 

The assumptions of the EMT model break down for roughness which is significantly above 
the wavelength of light used in the computation. Again, experimentation has shown the 
EMT based polarization measurements can still be repeatable and correlated to roughness, 
but less accurately predictive of the quantitative roughness. This previous work, using 
ellipsometers, has only used the specularly reflected component of light, and ignored the 
"diffuse" component. This assumption may have limited in the range of roughness for which 
the techniques could be applied, because for surfaces rougher than 10-6m, the signal to noise 
ratio (i.e. the ratio of specular reflection to diffuse reflection +real noise) becomes quite small. 
Using our combined specular/diffuse polarization model, we have begun studying the EMT 
model for small scale roughness. By using longer wavelengths imaged by near IR camera 
we expect that this can be extended to larger scale roughness, say 10~4 (depending on the 
material color or diffused albedo). Furthermore, by combining both specular and diffuse 
model we hope to reduce the accuracy requirements needed for existing levels of roughness. 

While out primary goal is to determine quantitative surface roughness measurements, we 
are currently assuming a rather simple models of surface textures, Gaussian "bumps". How- 
ever, real surfaces often have complex and anisotropic textures. Some issues of anisotropic 
textures and EMT models have been addressed in the literature, but the results are quite 
limited. While deriving quantitative measurements quickly becomes complex, it is clear that 
repeatable "polarimetric" information which is strongly correlated to the texture size and 
pattern, can be obtained. Therefore, we have begun investigations into using the SLAM 
package (see section 3.1) to directly "learn" roughness from appearance. As is often the case 
in visual learning, investigations into the proper representation of the input will be crucial. 
This has been the subject of our study to date. 

3    OBJECT RECOGNITION AND MODELING 
USING VISION 

3.1    Visual Learning and Recognition 

Learning can often be viewed as the problem of determining a function that maps an input 
vector space to an output vector space. Training examples of such a mapping are used to 
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Figure 3: The SLAM software package has been developed as a general tool for appearance 
modeling and recognition problems in vision. 

construct a continuous function that approximates the training data and generalizes it for 
intermediate instances. We have used generalized radial basis function (GRBF) networks to 
formulate the approximating function. We have introduced a novel method for constructing 
an optimal GRBF network for any given training data and an error bound using the integral 
wavelet transform. We have shown the optimality of the generated networks for the multi- 
dimensional mapping problem of object recognition and pose estimation. These results were 
presented at the 1995 International Conference on Computer Vision held in Boston in June, 
1995 [13]. An extended version of this publication will appear in the Pattern Recognition 
Journal in 1996. 

We have also developed a general algorithm for learning and recognizing visual appear- 
ance. We proposed the first parametrized model for visual appearance that can be auto- 
matically learned from two-dimensional images. The learning algorithm was used to develop 
a real-time color 3-D recognition system with 100 objects, real-time robot positioning and 
tracking, and illumination planning for object recognition in structured environments. Rec- 
ognizing the scope and generality of our appearance matching framework, we developed a 
software library for appearance matching (SLAM) which includes all the modules needed 
for appearance learning and recognition (see Figure 3). This package has already been li- 
censed to approximately 30 academic research laboratories around the world and 3 industrial 
sites in the U.S. (see section 6). In the last month, Columbia University has contacted ap- 
proximately 100 machine vision companies. The response has been enthusiastic and we are 
in the process of working out license agreements with several companies.  Our research on 



appearance matching can, therefore, be viewed as a success in technology transfer. 

3.2    CAD Model Acquisition from Multiple Range Images 

Automating the acquisition of Computer-Aided-Design (CAD) surface or solid models from 
laser scan data has been identified as one of the major goals in the field of computer vision. 
As CAD models become more central to parts design and manufacture, the ability to auto- 
matically generate these models from existing objects becomes paramount. There are still 
parts which are best designed using the tools of model makers, in materials such as clay or 
wood. It has been said that everyone would be using CAD systems if they were "as comfort- 
able and easy to use as foam, clay, and pine". As long as this state of affairs continues, there 
will be parts for which there are no CAD data. Without CAD data, it is not possible to use 
rapid prototyping systems to produce additional models, nor is it possible to benefit from 
any of the advanced analysis, manufacturing, and process planning capabilities of today's 
CAD systems. Other applications in which 3-D solid or surface data must be acquired from 
physical models or prototypes include model making, inspection and quality assurance, and 
reverse engineering. 

In our work we describe an approach to automated model acquisition that combines work 
in range data acquisition, segmentation and polyhedral model construction to address some 
of the problems cited above [25]. We motivate use of Binary Space Partitioning Trees (BSP 
trees) as an intermediate data structure that can easily be derived from low-level scanned 
range data, and from which multiple views can be efficiently merged into a single B-rep 
description from which a CAD model may be derived. The BSP tree represents volumes 
by partitioning space with planes, and therefore is limited in that it may only represent 
polyhedra. It does, however, have other attributes which make it a very attractive primitive 
for modeling 3-D objects, including both robustness and the existence of efficient algorithms 
for set operations. 

Our system works in a cycle consisting of three phases: acquisition and preprocessing, 
segmentation and model generation, and integration. In the first phase, a laser rangefinder is 
positioned by a robot arm to acquire a range image to which low-level processing is applied. 
The position and orientation (or viewpoint) that the arm holds the rangefinder in is known 
beforehand or, in future work, will be computed dynamically. In the second phase, the image 
is segmented into regions and a BSP tree model is built of that single image. Since the range 
image is from a particular viewpoint, this model will not be closed on the side opposite the 
rangefinder. In the third phase, the model is integrated with the models created from other 
views using boolean operations on the BSP trees. The final model is produced when the BSP 
tree model of each view has been integrated. Figure 4 shows laser range data for 3 views of 
an object, figure 5 shows the segmentation of the data, and figure 6 shows the models built 
from each view with their occlusion volumes. Each time a single-image model is generated 
it is added to the composite model using boolean operations. These models can then be 
merged into the composite model. 
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Figure 4: Real range data of part taken from three different views. 

Figure 5: Segmentations of the real range data. 

Figure 6: BSP tree models of the segmented faces and occlusion volumes. 



3.3    Deformable Object Modeling 

We have been developing software for deformable object modeling based on deformations 
from underlying generalized cylinders (GC's). The work is currently being pursed in the 
context of medical imaging, but the techniques can also be applied to tracking people, thermal 
front tracking (atmospheric and oceanographic), cloud/plume tracking, seismic analysis and 
may also be used on non-deformable objects. This work is building on our previous work on 
deformable GCs and super-quadratics, and has continued on two fronts: model extensions 
with implementation-al/experimental aspects and theoretical reformulation. Final results 
from our related work on symmetry recently appeared, [8] and the final results from our 
generalized cylinder recovery/modeling will appear soon, [9]. 

Our theoretical work has looked at reformulating deformable model recovery in terms of 
robust statistical M-estimators. These ideas were presented at the National Science Founda- 
tion (NSF)/Advanced Research Projects Agency (ARPA) Workshop on Representations for 
3-D vision, [7]. (Related material was presented in a paper in the proceedings of the ARPA 
IUW workshop and in a seminar at the University of Washington). The basic idea was to 
recast the "forces" of physically-motivated deformable modeling as the weighting functions 
of robust M-estimators. This approach naturally suggested improvements to the process 
which were incorporated into our cardiac modeling work, and have been submitted for con- 
ference publication. While other researchers have related deformable fitting to statistical 
estimation, our approach relates it to Robust Statistics. This reformulation has allowed us 
to provide solid justification for commonly used "ad hoc" techniques as well as suggesting 
new variations. For example, most of the ad-hoc, but basically successful techniques of de- 
formable object fitting, cannot be justified in terms of pure model/data uncertainty, but can 
be justified in terms of robust estimation and outlier processes. 

The experimental work is novel for two important reasons. The models are true tempo- 
rally deforming volumes. They are not just surface "shells", as in almost all previous work, 
but rather real volumetric solids. Secondly, we have extended the technique to handle data 
constraints that are projections of the actual constraints. This is important if the ideas are 
to be extended to traditional camera imagery. 

Our current project is using SPAMM (SPAtial Modulation of Magnetization) data to 
build a 4-D cardiac model. This is a continuing part of our collaboration with Siemens 
Research. The SPAMM data provides the opportunity for direct 2-D material correspon- 
dences, projections of the true 3-D motion of the heart, see figure 7. The SPAMM tags are 
too short lived to provide for periodic tracking, and we halted our periodic modeling efforts 
and concentrated on building a full 4D cardiac model using a combination of contour and 
SPAMM data. We call the new model the Hybrid Volumetric Ventriculoid (HVV), a hybrid 
deformable model designed for recovery of the left ventricle. The HVV is composed of an 
implicit parametric global volume component and a set of volumetric finite elements which 
express both rest-state of the model and local deformations away from this underlying shape, 
see 8. The global model is (currently) a thick-walled super-ellipse, though we are also explor- 
ing a GC-based version. The model has a rest-state which is defined as parametric offsets 
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Figure 7: SPAMM data imparts a physical pattern of magnetization on the heart tissue. 
This increase our ability to track tissue as the heart deforms. However tracking the pattern 
(tags) does not constrain the motion through the imaging plane, i.e. the Z-axis. 
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from the global model, so the "rest-state" is a GC. This rest state is, in a statistical sense, 
our prior model; all deformation penalties are measured from the rest-state. If there is no 
data, the model assumes the rest-state. Because our rest-state is much closer to underlying 
object than a regular super-ellipsoid, we have a more meaningful prior distribution and our 
FEM deformations are kept small. A true FEM model is used—uncertainty propagates using 
the FEM shape functions. Multiple-FEM layers are permitted between slices and between 
endocardium and epicardium. 

Underlying 
global HW 
component 

Tetrahedral finite-element» 
make up the local component. 

Initial offsets for the FEM 
provide a meaningful 

offset plus 
displacement 
from global componei 
form the HW The HW 

Figure 8:  The Hybrid Volumetric Ventriculoid (HW) is a deformable solid which can be 
used to track/recover the left ventricle of the heart. 

Recover of the HW is comprised of four stages. 

1. HWs are fit to contour data from the different phases (time slices) in the cardiac 
cycle. 

The model offsets are set to the model displacement values, and the model displace- 
ments nullified. 

The result is a set of rest states resembling the cardiac geometry at different phases. 
(In future work this will come from an atlas). 

2. The contour defined HW models from t>l are deformed, according to the 2-D dis- 
placement information from multiple orthogonal SPAMM acquisitions, to resemble the 
initial state (t=l). This "registration" of multiple orthogonal sets of 2-D displacements 
allows us to infer 3-D displacements. 

During this deformable fit, the SPAMM intersections are constrained only to match in 
their in-plane coordinates. The thru-plane coordinate is free to change in response to 
the influences of alternate view information. 

11 



3. The 3-D movement of the tags garnered from stage 2 is reversed to deform the initial 
rest state forward in time. The result is full 3-D displacements in each frame, see 9 

The contour data can now be reintroduced, thereby providing more detailed infor- 
mation about the shape of the outer boundary of the model. This stage fits to the 
combination of the displacements from stage 3 and the contour data. (Currently being 
implemented) 
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Figure 9: Results of HVV fitting. Lower right quadrant shows one slice of SPAMM data, 
lower right shows some of the forces from that slice. Upper right quadrant shows the tracked 
contours and intersection points from that slice. The upper left shows the inner and outer 
walls of the final HVV model associated with the same time as the slice. 

Compared to previous work our approach has the following advantages: 

+ Unlike previous work (e.g. Axel & Young's approach, [5]), the HVV is a hybrid model, 
and therefore is able to provide concise descriptions of overall shape and movement 
supporting comparison of an left ventricle (LV) under study with a "normal" population 
to detect and classify abnormalities. 

12 



■+- A local spline-like component describes fine detail, while the global component gives 
us the ability to fit more rapidly, and with increased topological stability, compared to 
purely local models. 

+ The HVV recovery paradigm also extends the state-of-the-art to directly include my- 
ocardial contour information, and mixes tracking and fitting. Axel & Young make 
use of the SPAMM grid intersections solely in fitting their model; Park, Metaxas, and 
Young, use the data from Axel k Young. 

+ Unlike the super-elliptic hybrid model proposed by Park, Metaxas, and Young, ([24]) 
the HW is a volumetric model. Thus, the SPAMM displacements can act directly 
on the model to deform it. 

+ The novel use of offsets from the global component allow the HVV to closely resemble 
the LV, even in the absence of local component activity, i.e we have a realistic prior 
model. 

A summary of the deformable modeling work, including a movie of the results of the 
fitting process, will be available at URL http://www.eecs.lehigh.edu/boult/DEFORM after 
June 30 1995. Note the most recent work incorporates some the ideas suggested by our 
theoretical work which improved the quality and speed of fitting. 

In addition to the above publications, Dr. Boult helped organize and run the NSF/ARPA 
workshop on representations for 3-D vision and prepare the report, which will be published 
as a book in the Springer Verlag series Lecture Notes in Computer Science. The basic report 
and paper abstracts will be available soon on the World-Wide Web (WWW). 

3.4    Shape from Darkness 

One method for determining object shape from imagery is to study the nature of the shadows 
that an object casts, both on the ground and on itself. We have previously developed and 
patented a method for taking a series of images of an object under various sharp illumination 
conditions, extracting the shadows, generating constraint relationships among them, and 
reconstructing the object shape from these relationships. The method works perfectly on 
perfect data, but on real-world noisy data it usually fails to converge to a solution. We 
have analyzed the several sources of error that arise, and have approached the problem 
from a different mathematical perspective. This has resulted in a newer and very robust 
demonstration system. 

The algorithmic foundations of this system have been completely recast as a problem 
in linear programming, with a net speedup of over a factor of ten, and with an error rate 
effectively of zero. All other observations and behaviors remain valid; in particular, finding 
the "best" consistent set of imagery remains NP-hard. It is anticipated it will be defended 
as a thesis in September 1995. 

Algorithmic and performance improvements include: 
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1) Developed an algorithm to detect the existence of conflicting shadow constraints in 
0(NZ) time; it is roughly equivalent to Early's algorithm in method and data structure. 

2) Discovered a way of representing the shifting of shadows as a linear programming 
constraint problem. In particular, instead of trying to alter the incoming image to mini- 
mize reconstruction error, the image is instead warped algorithmically, by real (not integer) 
amounts. These "shift equations" can be shown to be consistent, or in conflict, and by 
the addition of linear programming goal variable techniques, can be made to minimize the 
amount of image distortion necessary while simultaneously yielding a consistent image set. 
Also necessary for the method to work were additional constraints limiting the shifts to those 
that preserve image topology: the image cannot be "torn". Thus, instead of an A* heuristic 
search for the best modification to incoming imagery, the problem is now cast as a linear 
programming simplex method for the least amount of image warp. 

3) Discovered, taxonomized, and demonstrated a way to "decouple" those constraints 
which cannot be handled by image shift; these errors are exceedingly rare in practice, and 
basically occur only at extremely shallow illumination angles. 

3) Discovered a method for compressing incoming shadow data so that the linear pro- 
gramming method need not operate on the image itself, but on a simpler set of data which is 
approximately equivalent to shadow edge data. As the number of images taken at different 
light illumination angles increase, these two data sets approach each other. 

4) Formally proved many of the fundamental underlying results of the Shape from Dark- 
ness method. For example, formally proved that errors in incoming data can be detected 
simply by observing the reconstruction behavior at one critical pixel, namely, the global 
maximum height pixel. Also proved that the shadow edge equivalent set of imagery is in 
fact sufficient for a full surface reconstruction, and demonstrated how the full surface can be 
recovered from it. 

5) Implemented the method, and validated its performance on imagery captured from 
objects made of the widely varying materials of wood, styrofoam, and aluminum foil, without 
the use of any reflectance information or calibration. 

6) Designed and constructed a novel apparatus for mounting objects on a robot arm so 
that the arm can present the object to different angles of illumination; this apparatus allows 
imagery to be illuminated from light directions that vary over the surface of the Gaussian 
hemisphere. 

4    ROBOTIC VISION 

4.1    Visual Control of Grasping 

In most manufacturing tasks, it is necessary to have the ability to move parts together in 
useful configurations to make an assembly process more efficient. For example, we might 
require a robot to grasp a part off the assembly line and insert it into some fixture. In 
order to perform the grasping portion of this task, the robot must be able to locate the 
part, move its gripper to the vicinity of the part, locate the best points to grasp the part, 
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Figure 10: Experimental system used to test visual control of grasping and manipulation. 

move the fingers of the gripper to those grasping points, and finally, verify that the object 
is stably supported. Usually these kinds of tasks are performed by blind robots which use 
world coordinates, jigs and other devices to remove the need for the robot to visually find 
the 3-D location of the object. Systems built using this kind of robot control usually require 
large start-up costs in pre-production measurement, setup and testing. These systems also 
exhibit inflexible, brittle qualities. If a small design change is made in how the product is 
manufactured, the cost of replanning the robot assembly line, which may include extensive 
retooling, rejigging and a total revision of the robot control strategy, can be prohibitively 
expensive. The research we have completed addresses some of the problems associated with 
vision-based robot control [33, 32, 34, 3l]. The system, shown in figure 10, shows the major 
components of the system: a robot, a gripper, and two fixed stereo cameras. The vision 
system is able to track multiple moving targets at real time rates. In our system, each 
moving target is a fiducial mark (a black dot on a white background) which can be attached 
to a robot or other objects in the environment. The upper bound of the number of targets 
trackable at any one time is 255. Each finger of the robotic hand has 4 fiducial marks, and 
each object to be manipulated also has 1 or 2 fiducial marks. The tracker uses intensity 
thresholds to segment the fiducial marks from the background. 

Using this method, we have shown how vision can be used to direct the movement of a 
Puma robot and the movement of a two-fingered gripper system. In both cases, the robot 
systems were entirely unaware of the environment surrounding them (both systems were 
sensorless.) Under visual control, a Puma robot aligned and inserted a bolt into a nut, and 
the attached gripper grasped and tightened a bolt. This system performed tasks which would 
have been difficult to accomplish without the spatial understanding provided by vision. 

The key to our solution lies in the development of primitive visual control operations and 
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the application of a hierarchical approach to the visual control problem. The primitive visual 
control operations allowed us to examine many of the real time problems associated with 
visual control in concise, manageable units. By decomposing a complex manipulation into 
a series of these operations, we removed much of the complexity associated with creating 
a visual control system. Also, by developing the system in a modular fashion, we were 
able to readily reuse many of the primitive operations and complex tasks to solve many 
more complex problems. Not only was it not necessary to add sensors to the fingers, but 
the results have shown that visual control is capable of performing many of the operations 
necessary for elementary manipulation (information which was previously obtained using 
other sensors.) 

4.2    Dynamic Sensor Planning 

In this project, we have been researching methods for the automatic computation of view- 
points for monitoring objects and features in an active robot work-cell. We call this "Dynamic 
Sensor Planning." The static sensor planning problem has received much attention lately. 
Most research has focused on the computation of sets of positions, orientations, and optical 
settings for a camera (and, in some cases, for light sources) which will give satisfactory views 
of certain objects in a known scene. Each researcher has defined the phrase "satisfactory 
view" in his own terms, but the constraints most often considered are magnification (or 
resolution), focus, field-of-view, and occlusion. 

We have been working on extending our Machine Vision Planning (MVP) system [26, 
28, 27] to function in an environment in which objects are moving. As a specific example, 
consider a robot which has to deposit a bead of glue on a part prior to using that part in 
an assembly. A dynamic sensor planning system can be used to compute either stationary 
viewpoints or camera trajectories which maintain an unobstructed, well focused view of the 
target area on the part to monitor the gluing process. 

The basic setup includes two Puma 560 arms, able to operate in a work-cell, and a 
gantry robot, used for moving the camera through a computed trajectory. Our approach to 
Dynamic Sensor Planning has been based on temporal intervals, in which the task is broken 
down into intervals, each of which is to be monitored by a single viewpoint. To solve the 
occlusion problem, the system computes the volumes swept by all moving objects during 
this interval and, using the algorithms developed as part of MVP, computes viewpoints 
which avoid occlusion by these swept volumes. Such viewpoints are valid for the entire time 
interval. By similarly examining a number of time intervals, we break the Dynamic Sensor 
Planning problem down into a series of static subproblems. We have been using MVP to 
compute the viewpoints for each of the static subproblems, although part of the current work 
is focused on better methods of computing viewpoints for the static subproblems. 

The general idea behind our approach to dynamic sensor planning is best described by 
the following Temporal Interval Search algorithm [3]: 

1.      Compute the volumes swept by all moving objects during the task interval T. 
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Figure 11: Overview of the Experimental Setup 

2. Use MVP to compute a valid, unoccluded viewpoint using these swept volumes as if 
they were actual objects. 

3. If MVP can successfully find a viewpoint, use this viewpoint for the entire time interval 
T. 

4. If no such viewpoint is obtainable, divide the time interval in half yielding T\ = [t0, tnfi]- 
Go back to step 1 using interval T\. 

5. If the entire time interval T has been planned, we are finished.   If not, go to step 1 
using the remaining portion of the the original interval T. 

Thus, a swept volume algorithm useful for this research must produce results fairly quickly 
(since it may be called often), and must produce polyhedral models of these volumes. There- 
fore, we have embarked upon the present research task of robustly and efficiently computing 
polyhedral approximations to the volumes swept by moving polyhedral objects. A necessary 
step of computing these volumes is computing the volume swept by a moving polygon. 

We have developed an algorithm for computing these polyhedral approximations to these 
volumes [4]. We create a set of polygonal faces which are a superset of the boundary of the 
actual swept volume, by computing and approximating each of the 3 types of faces for each 
of the polygons in the polyhedron under motion. Then, we compute the arrangement of 
this set of faces, and traverse the outer boundary of this arrangement. This bounds our 
approximation to the swept volume. 

In order to demonstrate the usefulness and practicality of the sensor planning system 
as a whole, we will be running experiments in our robot work-cell.  In these experiments, 
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surveillance points and intervals will be computed by the dynamic sensor planning system. 
To realize these computed viewpoints, we have been constructing a sensor-positioning robot. 
This 5 degree-of-freedom Cartesian robot, having a work-space of roughly 1000 ft3, carries a 
camera in calibrated hand/eye configuration, and is pictured in figure 11. It can accurately 
position the camera in and around our robot work-cell, thereby monitoring objects under 
manipulation by our two Puma 560's. The hardware and controller software have been 
implemented, and as soon as the hand/eye system is calibrated, we shall continue with 
sensor planning and placement experiments. 

5    INTEGRATION OF VISION WITH 
OTHER MODALITIES 

5.1    Language Description of Visual Images 

People don't use everything they see. When they describe something of importance, they 
have several mental skills that allow them to summarize what is important in the observed 
scene, and to communicate that importance effectively. We have studied this problem and 
built a demonstration system that show how people understand significant spatial positions, 
orientations, and relationship of objects and how they express those concepts in English. 
The system works in two domains: it can talk about where kidney stones are in radiographs, 
and it can give directions to a building in a theme park such as Epcot center. This system 
was analyzed and improved in numerous ways, and then validated against the performance 
of people. The system and its documentation was defended as a thesis [2] in January 1995, 
and has produced a workshop paper submission [l]. A journal article incorporating these 
results is in preparation. 

Improvements included: 
1) A complete rewriting of the notation for the concepts involved, mapping the concept 

of spatial relationship into first-order predicate calculus, and adopting predicate calculus 
notation for exposition. 

2) Debugging the concept of minimization of spatial description, by adopting a form 
of three-valued logic to represent the three important classes of spatial concepts. First, 
namely, those relationships between a reference object and the to-be-described figure object, 
second, those relationships between a reference object and any of the distractor objects in 
the same visual context, and third, those relationships that are completely unused. The 
Quine-McClusky minimization technique was employed (which is of exponential order), but 
a heuristic variation on the method was also discovered that has a much shorter expected 
running time (of polynomial order). The method was extended to cover the concept of fuzzy 
minimization, as well, although crisp minimization gave adequate results and ran much 
faster. 

3) Defined the role of adverbials in modifying spatial descriptions, such as "very" near, 
etc., and algorithmically implemented it as a type of post-processing approximation to fuzzy 
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minimization. In short, the system of selecting an unambiguous deep spatial relationship 
now consists of three processing steps: first, the fuzzy individual relationships derived from 
the image data are represented as crisp logical predicates; second, the intended relationship 
is selected through a three-valued logic minimization criterion; third, the fuzz is put back in 
through the use of modifying adverbials. 

4) Made algorithmic the meaning of "descriptiveness" by defining it to be the probability 
that a user would properly select the intended figure object over any of the surrounding 
distractors. Since this depended on a model of user error, the performance of humans was 
measured in a series of tests that captured how well people agreed in the use of simple 
prepositions such as "right" or "near". It was found, for example, that objects having visual 
measurements of very low or very high image nearness, were also so described reliably by 
humans, however the vast middle ground of relationships had extremely high variance. Since 
it was difficult to obtain closed form solutions to the convolution of a user's model of the 
figure's spatial description with that of the distractors, the definition of "descriptiveness" is 
defined stochastically by dynamic simulation. 

5) Defined and implemented spatial inference, by noting that humans tend to pick as 
descriptive intermediate objects, those objects which imply the most other spatial relation- 
ships. Thus, no kidney stone is ever described as "above the pelvis" since everything in a 
kidney radiograph is above the pelvis; instead, phrases like "in the calyx" are selected be- 
cause they imply, among other relationships, "in the kidney" and "above the pelvis". Thus, 
a "good" description is one that implies the most descriptions. 

6) Developed and documented the existence of a novice-expert continuum in spatial 
description. In this, the novice describes all relationships with respect to very few "obvious" 
figure objects; in the extreme, there are no figure objects at all, and all objects are described 
with respect to image boundaries. Conversely, for an expert, nearly all objects in an image 
are "obvious"; the task is instead one of filtration of relationships, rather than creation. 
Middle grounds are possible, and the two methods of relationship creation and filtration are 
complementary. 

7) Analyzed and made algorithmic the concepts of comparative and superlative spatial 
relationships, noting that extreme measures are often easily and correctly determined by 
humans. 

Verification and validation included: 
1) Experiments with sixteen people who were given maps of the Epcot center, and descrip- 

tions of ten objects in the map, all of which were described using only spatial relationships. 
Agreement was high, with most of the subjects correctly identifying the ten objects, and 
only some confusion, which was systemic. 

2) The validation established a systemic cause of interpersonal error, namely, that people 
define relationships such as "right" as either "strictly right" (roughly speaking, due east), 
or "generally right" (roughly speaking, anywhere from northeast to southeast). People are 
self-consistent over time, but definitions between people are highly variable. 
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5.2    Visual Hand Gesture Recognition 

Talking with one's hands is not only natural, it can be useful as well. We are developing a 
system that replaces a personal computer's mouse with a camera instead. The pointing and 
clicking of the mouse can then be replaced by gestures and movements of the hand itself. The 
system tracks the hand and interprets a primitive "sign language", driving a menu selection 
system that appears on the screen. Work on this system was incremental, and has lead to 
the acceptance of a workshop paper [ll] . Research included the following experiments and 
results. 

1) Training data for the neural network front-end that classifies (static) gestures into 
one of four categories, was collected, and the network trained, with higher than 80 percent 
accuracy in actual tests. The network was optimized on a workstation. Some time was spent 
to automate calibration, particularly under different light conditions. 

2) Image tracking of the centroid of the segmented hand was optimized for stand-alone 
performance on a DSP board in the workstation; complete segmentation and production of 
(x,y,scale) triples of the hand now runs in excess of 7 Hz. Gestures were shown to have 
idiosyncratic signatures in this space. 

3) Noticed, documented, and exploited in algorithms, that the signal equivalent of "ges- 
ture begin", "gesture end", "qualifier begin", and "qualifier end", are apparent simply in 
the (x,y,scale) triples, with local extrema in y, particularly, indicating gestural punctuation. 
The y dimension appears to dominate, in part because it is this dimension in which the 
most work is done by the human arm in resisting gravity. These "haptic prosodies" clues are 
critical for triggering a full image capture for diagnosis by the neural net. Thus, the DSP 
board detects event boundaries, and the workstation proper analyzes and quantifies gestural 
content. The full system now tracks and interprets, although not fully automatic. 

20 



6    LICENSEES OF THE SLAM 
PACKAGE: 94-95 

Department of Computer Science, University of Rochester; 
Department of Computer Science, University of Virginia; 
Department of Electrical and Computer Engineering, Lehigh University; 
Department of Electrical Engineering and Computer Science, Lehigh University; 
Department of Electrical and Computer Engineering, Drexel University; 
The Robotics Institute, Carnegie Mellon University; 
Department of Computer Science, Michigan State University; 
Department of Electrical and Computer Engineering, Pennsylvania State University; 
Artificial Intelligence Laboratory, Massachusetts Institute of Technology; 
Department of Electrical and Computer Engineering, University of California, San Diego; 

Courant Institute, New York University; 
Department of Mechanical and Environmental Informatics, Tokyo Institute of Technology; 
Department of Mechanical Engineering, Osaka University; 
Department of Computer Science, University of Massachusetts; 
Information Science Research Laboratory, NTT Basic Research Laboratory; 
Instituto de Cibernetica, Barcelona, Spain; 
Department of Computer Science, University of Genoa, Italy; 
Computer Vision Laboratory, LIFIA, France; 
Center for Applied Computer Science, G.Fa.I.e.V., Germany; 
Morgan Stanley Research Division, New York; 
Quality Control Department, Pressco Limited, Ohio; 
Cambridge Research Laboratories, DEC, Cambridge 

21 



7    BIBLIOGRAPHY AND RECENT 
PUBLICATIONS 94-95 

[1] A. Abella, J. Starren, and J. R. Render. Automated natural language description 
of radiographs. In Proceedings of the 19th Symposium on Computer Applications in 
Medical Care, October 1995. 

[2] Alicia Abella. From Imagery to Salience: Locative Expressions in Context. PhD 
thesis, Department of Computer Science, Columbia University, 1995. 

[3] S. Abrams, P. K. Allen, and K. A. Tarabanis. Dynamic sensor planning. In Proceedings 
DARPA 1993 Image Understanding Workshop, Washington, DC, April 1993. 

[4] Steven Abrams and Peter K. Allen. Swept volumes and their use in viewpoint com- 
putation in robot work-cells. In Proceedings IEEE 1995 International Symposium on 
Assembly and Task Planning, Pittsburgh, PA, August 1995. 

[5] L. Axel and L. Dougherty. Heart wall motion: Improved method of spatial modulation 
of magnetization for mr imaging. Radiology, 172:349-350, 1989. 

[6] D. Bhat and S. K. Nayar. Stereo in the presence of specular reflection. International 
Conference on Computer Vision, pages 1086-1092, 1995. 

[7] T.E. Boult, S.D. Fenster, and T. O'Donnell. Physics in a Fantasy World vs. Robust 
Statistical Estimation. Springer-Verlag, Heidelberg and New York, 1995. Proceedings 
of the NSF Workshop on 3D representation, to appear. 

[8] A.D. Gross and T.E. Boult. Analyzing skewed symmetries. International Journal of 
Computer Vision, Nov 1994. 

[9] A.D. Gross and T.E. Boult. Understanding straight homogeneous generalized cylin- 
ders: A case study. IEEE Transactions on Pattern Analysis and Machine Intelligence 
(PAMI), 1995. To appear. 

[10] J. R. Kender and R. Kjeldsen. On seeing spaghetti: A novel self-adjusting seven 
parameter hough space for analyzing flexible extruded objects. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, February 1995. 

[11] R. Kjeldsen and J. R. Kender. Visual hand gesture recognition for window system 
control. In Proceedings of the IEEE International Workshop on Automatic Face- and 
Gesture-Recognition, Zurich, June 1995. 

22 



[12] Paul Michelman and Peter Allen. Forming complex dextrous manipulations from task 
primitives. In 1994 IEEE International Conference on Robotics & Automation, San 

Diego, May 1994. 

[13] S. Mukherjee and S. K. Nayar. Automatic generation of grbf networks for visual 
learning. International Conference on Computer Vision, pages 794-800, 1995. 

[14] H. Murase and S. K. Nayar. Learning object models from appearance. In Proc. of 

AAAI, Washigton, July 1993. 

[15] H. Murase and S. K. Nayar. Illumination planning for object recognition in parametric 
eigenspaces. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, 

June 1994. Outstanding Paper Award. 

[16] H. Murase and S. K. Nayar. Illumination planning for object recognition in struc- 
tured enviroments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 

December 1994. 

[17] H. Murase and S. K. Nayar. Visual learning and recognition of 3-d objects from 
appearance. International Journal of Computer Vision, April 1995. 

[18] S. K. Nayar, X. Fang, and T. E. Boult. Separation of reflection components using 
color and polarization. International Journal of Computer Vision, 1996 (in press). 

[19] S. K. Nayar and M. Oren. Visual appearance of matte surfaces. SCIENCE, 267:1153- 

1156, February 1995. 

[20] M. Oren and S. K. Nayar. Comprehensive model for diffuse reflection. Proceedings of 
SIGGRAPH 94, July 1994. 

[21] M. Oren and S. K. Nayar. Generalization of the lambertian model and implication 
for machine vision. International Journal of Computer Vision, April 1995. 

[22] M. Oren and S. K. Nayar. A theory of specular surface geometry. International 
Conference on Computer Vision, pages 740-747, 1995. 

[23] I. P. Park and J. R. Render. Topological direction-giving and visual navigation in 
large enviroments. Artificial Intelligence Journal, to appear, Special Issue on Com- 

puter Vision, 1995. 

[24] J. Park, D. Metaxas, and A. Young. Deformable models with parameter functions: 
Application to heart-wall modeling. In Proceedings of the IEEE CVPR, Seattle , 

Washington, pages 437-442, 1994. 

[25] Michael Reed, Peter K. Allen, and Steven Abrams. CAD model acquistion using 
BSP trees. In IROS International Conference on Intelligent Robots and Systems, 

pages 335-339, August 1995. 

23 



[26] K. Tarabanis, Roger Tsai, and Peter K. Allen. Analytical characterization of the 
feature detectability constraints of resolution, focus and field-of-view for vision sensor 
planning. Computer Vision, Graphics, and Image Processing, 59(3):340-358, May 
1994. 

[27] Konstantinos Tarabanis, Peter K. Allen, and Roger Y. Tsai. A survey of sensor 
planning in computer vision. IEEE Transactions on Robotics and Automation, 11(1), 
February 1995. 

[28] Konstantinos Tarabanis, Roger Y. Tsai, and Peter K. Allen. The MVP sensor plan- 
ning system for robotic vision tasks. IEEE Transactions on Robotics and Automation, 
11(1), February 1995. 

[29] Alex Timcenko and Peter Allen. Probability-driven motion planning for mobile 
robots. In 1994 IEEE International Conference on Robotics & Automation, San 
Diego, May 1994. 

[30] B. Yoshimi and P. K. Allen. Visual control of grasping and manipulation. In Proc. 
ARPA 1994 Image Understanding Workshop, pages 1151-1158, November 1994. 

[31] Billibon Yoshimi. Visual Control of Robotics Tasks. PhD thesis, Dept.of Computer 
Science, Columbia University, 1995. 

[32] Billibon Yoshimi and P. K. Allen. Visual control of grasping and manipulation tasks. 
In IEEE Multi-Sensor Fusion '94, October 1994. 

[33] Billibon Yoshimi and Peter Allen. Active uncalibrated visual servoing. IEEE Trans- 
actions on Robotics and Automation, 11(5):516—521, August 1995. 

[34] Billibon Yoshimi and Peter. K. Allen. Active uncalibrated visual servoing. In IEEE 
International Conference on Robotics and Automation, pages 156-161, San Diego, 
1994. 

24 


